目的 對(duì)使用組織工程技術(shù)構(gòu)建半月板的研究進(jìn)展及其應(yīng)用情況進(jìn)行綜述。方法 廣泛查閱近年來通過組織工程構(gòu)建半月板的相關(guān)文獻(xiàn),分別從種子細(xì)胞、支架材料及生物反應(yīng)器3個(gè)方面進(jìn)行分析總結(jié)。結(jié)果 組織工程半月板越來越受到人們的重視,近年來對(duì)種子細(xì)胞、支架材料及生物反應(yīng)器的研究均取得了可喜進(jìn)展,但研究成果真正應(yīng)用于臨床尚需努力。結(jié)論 尋求更加有效的構(gòu)建方法仍然是組織工程半月板的研究熱點(diǎn),隨著對(duì)種子細(xì)胞、支架材料及生物反應(yīng)器認(rèn)識(shí)的不斷深入,必將會(huì)構(gòu)建出更接近于人體的組織工程半月板。
引用本文: 李尚福,戎利民. 組織工程半月板研究進(jìn)展. 中國(guó)修復(fù)重建外科雜志, 2013, 27(1): 95-100. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國(guó)修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431. |
2. | Noyes FR, Heckmann TP, Barber-Westin SD. Meniscus repair and transplantation: a comprehensive update. J Orthop Sports Phys Ther, 2012, 42(3): 274-290. |
3. | Bulgheroni P, Murena L, Ratti C, et al. Follow-up of collagen meniscus implant patients: clinical, radiological, and magnetic resonance imaging results at 5 years. Knee, 2010, 17(3): 224-229. |
4. | Noyes FR, Barber-Westin SD, Chen RC. Repair of complex and avascular meniscal tears and meniscal transplantation. Instr Course Lect, 2011, 60: 415-437. |
5. | Pereira H, Frias AM, Oliveira JM, et al. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy, 2011, 27(12): 1706-1719. |
6. | Malvankar SM, Khan WS. An overview of the different approaches used in the development of meniscal tissue engineering. Curr Stem Cell Res Ther, 2012, 7(2): 157-163. |
7. | Sanchez-Adams J, Athanasiou KA. Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering. Tissue Eng Part C Methods, 2011, 18(3): 235-243. |
8. | Son M, Levenston ME. Discrimination of meniscal cell phenotypes using gene expression profiles. Eur Cell Mater, 2012, 23: 195-208. |
9. | Kang SW, Son SM, Lee JS, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A, 2006, 78(3): 659-671. |
10. | Baker BM, Nathan AS, Huffman GR, et al. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage, 2009, 17(3): 336-345. |
11. | Gruber HE, Mauerhan D, Chow Y, et al. Three-dimensional culture of human meniscal cells: extracellular matrix and proteoglycan production. BMC Biotechnol, 2008, 8: 54. |
12. | Scotti C, Pozzi A, Manqiavin L, et al. Healing of meniscal tissue by cellular fibrin glue: an in vivo study. Knee Surg Sports Traumatol Arthrosc, 2009, 17(6): 645-651. |
13. | Weinand C, Peretti GM, Adams SB Jr, et al. An allogenic cell-based implant for meniscal lesions. Am J Sports Med, 2006, 34(11): 1779-1789. |
14. | Hoben GM, Hu JC, James RA, et al. Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng, 2007, 13(5): 939-946. |
15. | Hoben GM, Athanasiou KA. Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli. Biotechnol Bioeng, 2008, 100(3): 587-598. |
16. | Gunja NJ, Athanasiou KA. Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds. Biotechnol Bioeng, 2009, 103(4): 808-816. |
17. | Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng, 2007, 13(9): 2195-2205. |
18. | Nerurkar NL, Han W, Mauck RL, et al. Homologous structure-function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds. Biomaterials, 2011, 32(2): 461-468. |
19. | Yamasaki T, Deie M, Shinomiya R, et al. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. Artif Organs, 2008, 32(7): 519-524. |
20. | Angele P, Johnstone B, Kujat R, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A, 2008, 85(2): 445-455. |
21. | Zellner J, Mueller M, Berner A, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A, 2010, 94(4): 1150-1161. |
22. | Horie M, Sekiya I, Muneta T, et al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells, 2009, 27(4): 878-887. |
23. | Sanchez-Adams J, Athanasiou KA. Dermis isolated adult stem cells for cartilage tissue engineering. Biomaterials, 2012, 33(1): 109-119. |
24. | Hoben GM, Koay EJ, Athanasiou KA. Fibrochondrogenesis in two embryonic stem cell lines: effects of differentiation timelines. Stem Cells, 2008, 26(2): 422-430. |
25. | Hoben GM, Willard VP, Athanasiou KA. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev, 2009, 18(2): 283-292. |
26. | Gu Y, Wang Y, Dai H, et al. Chondrogenic differentiation of canine myoblasts induced by cartilage-derived morphogenetic protein-2 and transforming growth factor-beta1 in vitro. Mol Med Report, 2012, 5(3): 767-772. |
27. | Henson F, Getgood A. The use of scaffolds in musculoskeletal tissue engineering. Open Orthop J, 2011, 5 Suppl 2: 261-266. |
28. | Rodkey WG, DeHaven KE, Montgomery WH 3rd, et al. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg (Am), 2008, 90(7): 1413-1426. |
29. | Bodin A, Concaro S, Brittberg M, et al. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med, 2007, 1(5): 406-408. |
30. | Mandal BB, Park SH, Gil ES, et al. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials, 2011, 32(2): 639-651. |
31. | Mandal BB, Park SH, Gil ES, et al. Stem cell-based meniscus tissue engineering. Tissue Eng Part A, 2011, 17(21-22): 2749-2761. |
32. | Yan LP, Oliveira JM, Oliveira AL, et al. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater, 2012, 8(1): 289-301. |
33. | Huey DJ, Sanchez-Adams J, Willard VP, et al. Immunogenicity of bovine and leporine articular chondrocytes and meniscus cells. Tissue Eng Part A, 2012, 18(5-6): 568-575. |
34. | Maier D, Braeun K, Steinhauser E, et al. In vitro analysis of an allogenic scaffold for tissue-engineered meniscus replacement. J Orthop Res, 2007, 25(12): 1598-1608. |
35. | Stapleton TW, Inqram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242. |
36. | van Tienen TG, Hannink G, Buma P. Meniscus replacement using synthetic materials. Clin Sports Med, 2009, 28(1): 143-156. |
37. | Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev, 2008, 14(1): 3-17. |
38. | Efe T, Getqood A, Schofer MD, et al. The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc, 2012, 20(9): 1822-1830. |
39. | de Mulder EL, Hannink G, Giele M, et al. Proliferation of meniscal fibrochondrocytes cultured on a new polyurethane scaffold is stimulated by TGF-ss. J Biomater Appl, 2011. [Epub ahead of print]. |
40. | Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly (vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater, 2010, 6(12): 4716-4724. |
41. | Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev, 2007, 59(14): 1413-1433. |
42. | Baker BM, Gee AO, Sheth NP, et al. Meniscus tissue engineering on the nanoscale: from basic principles to clinical application. J Knee Surg, 2009, 22(1): 45-59. |
43. | Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials, 2007, 28(11): 1967-1977. |
44. | Driscoll TP, Nerurkar NL, Jacobs NT, et al. Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds. J Mech Behav Biomed Mater, 2011, 4(8): 1627-1636. |
45. | Baker BM, Nathan AS, Gee AO, et al. The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials, 2010, 31(24): 6190-6200. |
46. | Ionescu LC, Lee GC, Garcia GH, et al. Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering. Tissue Eng Part A, 2011, 17(1-2): 193-204. |
47. | Kon E, Filardo G, Tschon M, et al. Tissue engineering for total meniscal substitution: animal study in sheep model—results at 12 months. Tissue Eng Part A, 2012, 18(15-16): 1573-1582. |
48. | Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev, 2009, 15(1): 43-53. |
49. | Oragui E, Nannaparaju M, Khan WS. The role of bioreactors in tissue engineering for musculoskeletal applications. Open Orthop J, 2011, 5 Suppl 2: 267-270. |
50. | Forriol F. Growth factors in cartilage and meniscus repair. Injury, 2009, 40 Suppl 3: S12-16. |
51. | Steinert AF, Palmer GD, Capito R, et al. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng, 2007, 13(9): 2227-2237. |
52. | Riera KM, Rothfusz NE, Wilusz RE, et al. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther, 2011, 13(6): R187. |
53. | Stewart K, Pabbruwe M, Dickinson S, et al. The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds. Tissue Eng, 2007, 13(2): 271-280. |
54. | 葉川, 鄧展生, 李寶軍, 等. 三種生長(zhǎng)因子對(duì)人胚半月板細(xì)胞增殖及細(xì)胞表型的影響. 中國(guó)修復(fù)重建外科雜志, 2007, 21(10): 1137-1141. |
55. | Ishida K, Kuroda R, Miwa M, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng, 2007, 13(5): 1103-1112. |
56. | Petersen W, Puf T, Starke C, et al. Locally applied angiogenic factors—a new therapeutic tool for meniscal repair. Ann Anat, 2005, 187(5-6): 509-519. |
57. | Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng, 2005, 11(7-8): 1095-1104. |
58. | Neves AA, Medcalf N, Brindle KM. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds. Biomaterials, 2005, 26(23): 4828-4836. |
59. | Nerurkar NL, Sen S, Baker BM, et al. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater, 2011, 7(2): 485-491. |
60. | Gunja NJ, Athanasiou KA. Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds. J Biomed Mater Res A, 2010, 92(3): 896-905. |
61. | Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-beta1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials, 2009, 30(4): 565-573. |
62. | Martinez H, Brackmann C, Enejder A, et al. Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A, 2012, 100(4): 948-957. |
63. | Nishimuta JF, Levenston ME. Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis Cartilage, 2012, 20(5): 422-429. |
64. | Abraham AC, Edwards CR, Odegard GM, et al. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J Mech Behav Biomed Mater, 2011, 4(8): 2024-2030. |
65. | Baker BM, Shah RP, Huang AH, et al. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng Part A, 2011, 17(9-10): 1445-1455. |
66. | Huey DJ, Athanasiou KA. Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS One, 2011, 6(11): e27857. |
67. | Kanichai M, Ferquson D, Prendergast PJ, et al. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol, 2008, 216(3): 708-715. |
68. | Tan GK, Dinnes DL, Myers PT, et al. Effects of biomimetic surfaces and oxygen tension on redifferentiation of passaged human fibrochondrocytes in 2D and 3D cultures. Biomaterials, 2011, 32(24): 5600-5614. |
69. | Gunja NJ, Dujari D, Chen A, et al. Migration responses of outer and inner meniscus cells to applied direct current electric fields. J Orthop Res, 2012, 30(1): 103-111. |
- 1. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431.
- 2. Noyes FR, Heckmann TP, Barber-Westin SD. Meniscus repair and transplantation: a comprehensive update. J Orthop Sports Phys Ther, 2012, 42(3): 274-290.
- 3. Bulgheroni P, Murena L, Ratti C, et al. Follow-up of collagen meniscus implant patients: clinical, radiological, and magnetic resonance imaging results at 5 years. Knee, 2010, 17(3): 224-229.
- 4. Noyes FR, Barber-Westin SD, Chen RC. Repair of complex and avascular meniscal tears and meniscal transplantation. Instr Course Lect, 2011, 60: 415-437.
- 5. Pereira H, Frias AM, Oliveira JM, et al. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy, 2011, 27(12): 1706-1719.
- 6. Malvankar SM, Khan WS. An overview of the different approaches used in the development of meniscal tissue engineering. Curr Stem Cell Res Ther, 2012, 7(2): 157-163.
- 7. Sanchez-Adams J, Athanasiou KA. Regional effects of enzymatic digestion on knee meniscus cell yield and phenotype for tissue engineering. Tissue Eng Part C Methods, 2011, 18(3): 235-243.
- 8. Son M, Levenston ME. Discrimination of meniscal cell phenotypes using gene expression profiles. Eur Cell Mater, 2012, 23: 195-208.
- 9. Kang SW, Son SM, Lee JS, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A, 2006, 78(3): 659-671.
- 10. Baker BM, Nathan AS, Huffman GR, et al. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage, 2009, 17(3): 336-345.
- 11. Gruber HE, Mauerhan D, Chow Y, et al. Three-dimensional culture of human meniscal cells: extracellular matrix and proteoglycan production. BMC Biotechnol, 2008, 8: 54.
- 12. Scotti C, Pozzi A, Manqiavin L, et al. Healing of meniscal tissue by cellular fibrin glue: an in vivo study. Knee Surg Sports Traumatol Arthrosc, 2009, 17(6): 645-651.
- 13. Weinand C, Peretti GM, Adams SB Jr, et al. An allogenic cell-based implant for meniscal lesions. Am J Sports Med, 2006, 34(11): 1779-1789.
- 14. Hoben GM, Hu JC, James RA, et al. Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng, 2007, 13(5): 939-946.
- 15. Hoben GM, Athanasiou KA. Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli. Biotechnol Bioeng, 2008, 100(3): 587-598.
- 16. Gunja NJ, Athanasiou KA. Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds. Biotechnol Bioeng, 2009, 103(4): 808-816.
- 17. Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng, 2007, 13(9): 2195-2205.
- 18. Nerurkar NL, Han W, Mauck RL, et al. Homologous structure-function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds. Biomaterials, 2011, 32(2): 461-468.
- 19. Yamasaki T, Deie M, Shinomiya R, et al. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. Artif Organs, 2008, 32(7): 519-524.
- 20. Angele P, Johnstone B, Kujat R, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A, 2008, 85(2): 445-455.
- 21. Zellner J, Mueller M, Berner A, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A, 2010, 94(4): 1150-1161.
- 22. Horie M, Sekiya I, Muneta T, et al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells, 2009, 27(4): 878-887.
- 23. Sanchez-Adams J, Athanasiou KA. Dermis isolated adult stem cells for cartilage tissue engineering. Biomaterials, 2012, 33(1): 109-119.
- 24. Hoben GM, Koay EJ, Athanasiou KA. Fibrochondrogenesis in two embryonic stem cell lines: effects of differentiation timelines. Stem Cells, 2008, 26(2): 422-430.
- 25. Hoben GM, Willard VP, Athanasiou KA. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells Dev, 2009, 18(2): 283-292.
- 26. Gu Y, Wang Y, Dai H, et al. Chondrogenic differentiation of canine myoblasts induced by cartilage-derived morphogenetic protein-2 and transforming growth factor-beta1 in vitro. Mol Med Report, 2012, 5(3): 767-772.
- 27. Henson F, Getgood A. The use of scaffolds in musculoskeletal tissue engineering. Open Orthop J, 2011, 5 Suppl 2: 261-266.
- 28. Rodkey WG, DeHaven KE, Montgomery WH 3rd, et al. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg (Am), 2008, 90(7): 1413-1426.
- 29. Bodin A, Concaro S, Brittberg M, et al. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med, 2007, 1(5): 406-408.
- 30. Mandal BB, Park SH, Gil ES, et al. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials, 2011, 32(2): 639-651.
- 31. Mandal BB, Park SH, Gil ES, et al. Stem cell-based meniscus tissue engineering. Tissue Eng Part A, 2011, 17(21-22): 2749-2761.
- 32. Yan LP, Oliveira JM, Oliveira AL, et al. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater, 2012, 8(1): 289-301.
- 33. Huey DJ, Sanchez-Adams J, Willard VP, et al. Immunogenicity of bovine and leporine articular chondrocytes and meniscus cells. Tissue Eng Part A, 2012, 18(5-6): 568-575.
- 34. Maier D, Braeun K, Steinhauser E, et al. In vitro analysis of an allogenic scaffold for tissue-engineered meniscus replacement. J Orthop Res, 2007, 25(12): 1598-1608.
- 35. Stapleton TW, Inqram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242.
- 36. van Tienen TG, Hannink G, Buma P. Meniscus replacement using synthetic materials. Clin Sports Med, 2009, 28(1): 143-156.
- 37. Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev, 2008, 14(1): 3-17.
- 38. Efe T, Getqood A, Schofer MD, et al. The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc, 2012, 20(9): 1822-1830.
- 39. de Mulder EL, Hannink G, Giele M, et al. Proliferation of meniscal fibrochondrocytes cultured on a new polyurethane scaffold is stimulated by TGF-ss. J Biomater Appl, 2011. [Epub ahead of print].
- 40. Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly (vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater, 2010, 6(12): 4716-4724.
- 41. Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev, 2007, 59(14): 1413-1433.
- 42. Baker BM, Gee AO, Sheth NP, et al. Meniscus tissue engineering on the nanoscale: from basic principles to clinical application. J Knee Surg, 2009, 22(1): 45-59.
- 43. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials, 2007, 28(11): 1967-1977.
- 44. Driscoll TP, Nerurkar NL, Jacobs NT, et al. Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds. J Mech Behav Biomed Mater, 2011, 4(8): 1627-1636.
- 45. Baker BM, Nathan AS, Gee AO, et al. The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials, 2010, 31(24): 6190-6200.
- 46. Ionescu LC, Lee GC, Garcia GH, et al. Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering. Tissue Eng Part A, 2011, 17(1-2): 193-204.
- 47. Kon E, Filardo G, Tschon M, et al. Tissue engineering for total meniscal substitution: animal study in sheep model—results at 12 months. Tissue Eng Part A, 2012, 18(15-16): 1573-1582.
- 48. Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev, 2009, 15(1): 43-53.
- 49. Oragui E, Nannaparaju M, Khan WS. The role of bioreactors in tissue engineering for musculoskeletal applications. Open Orthop J, 2011, 5 Suppl 2: 267-270.
- 50. Forriol F. Growth factors in cartilage and meniscus repair. Injury, 2009, 40 Suppl 3: S12-16.
- 51. Steinert AF, Palmer GD, Capito R, et al. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng, 2007, 13(9): 2227-2237.
- 52. Riera KM, Rothfusz NE, Wilusz RE, et al. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther, 2011, 13(6): R187.
- 53. Stewart K, Pabbruwe M, Dickinson S, et al. The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds. Tissue Eng, 2007, 13(2): 271-280.
- 54. 葉川, 鄧展生, 李寶軍, 等. 三種生長(zhǎng)因子對(duì)人胚半月板細(xì)胞增殖及細(xì)胞表型的影響. 中國(guó)修復(fù)重建外科雜志, 2007, 21(10): 1137-1141.
- 55. Ishida K, Kuroda R, Miwa M, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng, 2007, 13(5): 1103-1112.
- 56. Petersen W, Puf T, Starke C, et al. Locally applied angiogenic factors—a new therapeutic tool for meniscal repair. Ann Anat, 2005, 187(5-6): 509-519.
- 57. Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng, 2005, 11(7-8): 1095-1104.
- 58. Neves AA, Medcalf N, Brindle KM. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds. Biomaterials, 2005, 26(23): 4828-4836.
- 59. Nerurkar NL, Sen S, Baker BM, et al. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater, 2011, 7(2): 485-491.
- 60. Gunja NJ, Athanasiou KA. Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds. J Biomed Mater Res A, 2010, 92(3): 896-905.
- 61. Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-beta1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials, 2009, 30(4): 565-573.
- 62. Martinez H, Brackmann C, Enejder A, et al. Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A, 2012, 100(4): 948-957.
- 63. Nishimuta JF, Levenston ME. Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis Cartilage, 2012, 20(5): 422-429.
- 64. Abraham AC, Edwards CR, Odegard GM, et al. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J Mech Behav Biomed Mater, 2011, 4(8): 2024-2030.
- 65. Baker BM, Shah RP, Huang AH, et al. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng Part A, 2011, 17(9-10): 1445-1455.
- 66. Huey DJ, Athanasiou KA. Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS One, 2011, 6(11): e27857.
- 67. Kanichai M, Ferquson D, Prendergast PJ, et al. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol, 2008, 216(3): 708-715.
- 68. Tan GK, Dinnes DL, Myers PT, et al. Effects of biomimetic surfaces and oxygen tension on redifferentiation of passaged human fibrochondrocytes in 2D and 3D cultures. Biomaterials, 2011, 32(24): 5600-5614.
- 69. Gunja NJ, Dujari D, Chen A, et al. Migration responses of outer and inner meniscus cells to applied direct current electric fields. J Orthop Res, 2012, 30(1): 103-111.